Glut 1 Deficiency –
from infants to adolescents

Joerg Klepper

Aschaffenburg, Germany
Glut 1 Deficiency –
from infants to adolescents

1. Introduction to Glut1D
2. from infants to adolescents
3. FAQs
Glucose is the essential fuel for the brain
Glut1D: diagnosis

- Lumbar puncture
 - CSF glucose ↓
 - CSF lactate ↓

- Mutations in the GLUT1 gene (SLC2A1)

- Glucose uptake assay
Glut1D: symptoms

- Epilepsy
 - Infantile seizures
 - Absence seizures
- Movement disorder
 - Spasticity
 - Ataxia
 - Dystonia
 - Chorea
- Cognitive/behavioral disturbances
 - Cognitive impairment
 - Delayed adaptive behavior
 - Variable attention

Classic phenotype
- Developmental encephalopathy

Pearson TS. 2013
Glut1D: treatment

- Glucose
- BBB
- KD
- Fat
- β-Ox.
- Ketones
- Acetyl-CoA
- TCA cycle
- Energy
- Brain

Energy
Glut 1 Deficiency – from infants to adolescents

1. Introduction to Glut1D

2. from infants to adolescents

3. FAQs
from infants to adolescents

- 3 : 1 KD
- 2 : 1 KD
- MAD (LGIT)

Atypical:
- migraine
- writer’s cramp
- alt. Hemiplegia
-
Long-Term Clinical Course of Glut1 Deficiency Syndrome

Aliza S. Alter, MD1, Kristin Engelstad, MS1, Veronica J. Hinton, PhD1,2, Jacqueline Montes, PT, EdD1, Toni S. Pearson, MD1, Cigdem I. Akman, MD1, and Darryl C. De Vivo, MD1
Seizure types are variable:

- zyanotic spells = "turning blue"
- absence = "dreaming"
- focal = "one part of body"
- generalized = "entire body"
- myoclonic-astatic = "jerks & falls"
INFANTS

Paroxysmal eye–head movements in Glut1 deficiency syndrome

= “aberrant gaze saccades” are an early symptom of Glut1D
INFANTS & toddlers
Movement disorder
10%

„Absence“ Epilepsy
SCHOOL-AGE Epilepsy
SCHOOL-AGE

Movement disorder
Cognitive function:

Strengths
- Understanding language
- "Sequential" processing
- Pleasant kids, good social skills
- No decline

Weakness
- Active language
- Visual attention
- Motor skills
- "Whole picture" processing
ADOLESCENCE

PAROXYSMAL EVENTS

Questionnaire: n = 73

Klepper J et al, MovDisClinPract 2017
from infants to adolescents

- 3:1 KD
- 2:1 KD
- MAD (LGIT)

Atypical:
- migraine
- writer’s cramp
- alt. Hemiplegia
-
Glut 1 Deficiency – from infants to adolescence

1. Introduction to Glut1D

2. from infants to adolescents

3. FAQs
„What about the other Gluts?“
Glut1D: diagnosis in RBC

Gras D et al, Ann Neurol, epub

METAglut1

For the early detection of GLUT1 deficiency syndrome in a simple blood sample
Glut1D: diagnosis in RBC

Control

100%

Glut1D

quantitative Defect

50%

Glut1D

functional Defect

50%
„No mutation, no Glut1D?“

SLC2A1-negative patients:

Prof. Hans Scheffer
Institute of Human Genetics
Nijmegen, Netherlands
SLC2A1-positive patients

- heterozygous mutations
 - 85%
SLC2A1-negative patients
SLC2A1-negative patients?
What about other tissues?

Muscle?
Retina?
Placenta?
Heart?
ketogenic diets

Ketogenic Diet 4:1
- Ketosis: Ø, Taste: Ø

Ketogenic Diet 3:1
- Ketosis: ✓, Taste: Ø

Modified Atkins-Diet
- Ketosis: Ø, Taste: ✓

Low glycemic Index-Diet
- Ketosis: Ø, Taste: Ø

Regular diet
- Ketosis: Ø, Taste: Ø
Kass HR et al, Seizure 2016;35:83-87

Use of dietary therapies amongst patients with GLUT1 deficiency syndrome. \(n=92 \)

- **Efficacy:**
 - \(>50\% \) seizure control: 95%!
 - \(>90\% \) seizure control: 80%!

- duration 5.5 years
- 64% without AEDs
Outcome of ketogenic diets in GLUT1 deficiency syndrome in Japan: A nationwide survey. n=39

- **Efficacy:**

 >90% seizure control: 80%!
The developing brain needs more energy!

Brain Energy demand

1y 6y 12y adult

Ketogenic diets

KD - how long?
„What about atherosclerosis?

Grossbeck DK et al.
Long-term use of the ketogenic diet in the treatment of epilepsy.
Dev Med Child Neurol. 2006

\[
\begin{array}{lcccc}
\text{n = 28} & \text{Cholesterin ges.} & 201 \text{ mg/dl} & (>200) \\
& \text{Cholesterin HDL} & 54 \text{ mg/dl} & (<35) \\
& \text{Cholesterin LDL} & 129 \text{ mg/dl} & (>150) \\
& \text{Triglyceride} & 97 \text{ mg/dl} & (>200)
\end{array}
\]
10 patients, 10 years – long term follow-up of cardiovascular risk factors in Glut1D

Total cholesterol SDS

Triglycerides SDS
10 patients, 10 years – long term follow-up of cardiovascular risk factors in Glut1D

A. carotis Doppler

IMT, p = 0.63
Ketonesters (Triheptanoin)?

- C7-ketoester („artificial ketone“)
- used as tracer for butter in the EU
- liquid at RT with indifferent taste

![Diagram showing the metabolism of triheptanoin and fatty acids through the TCA cycle and ATP production.](image)
Triheptanoin-Study UX007

Design: - randomised, double-blind, placebo-controlled
- patients on KD excluded!

Randomisation

6 wks baseline

8 wks Study

“open-label extension period” => all patients on C7

Optional: C7 ff.

52 Wks

2 Studies: Triheptanoin for

1. EPILEPSY

2. Paroxysmal movement disorders
Increasing scientific interest

- "ketogenic diet" (Increasing from 800 in 2009 to 2000 in 2016)
- "Glut1 Deficiency" (Increasing from 150 in 2009 to 320 in 2016)
Diagnosis: genetic testing >> lumbar puncture

Brain MRI: white matter abnormalities in 1 of 4 patients!

Treatment: AED ineffective
MAD effective in 1 of 3 patients

early diagnosis & start KD: => better outcome
Glut1D gene therapy

Glut1D mouse + Adenovirus-ass. vector → Glut1D mouse → Monkey
These doctors - always need some help...!!
Well - interesting...

We have a great idea....!
Thank you to the sponsors
Thank you all!

joerg.klepper@klinikum-ab-alz.de

Save the date:

European Glut1D symposium
2018 London
2020 Paris
2022 Aschaffenburg !